11 research outputs found

    The influence of topology and information diffusion on networked game dynamics

    Get PDF
    This thesis studies the influence of topology and information diffusion on the strategic interactions of agents in a population. It shows that there exists a reciprocal relationship between the topology, information diffusion and the strategic interactions of a population of players. In order to evaluate the influence of topology and information flow on networked game dynamics, strategic games are simulated on populations of players where the players are distributed in a non-homogeneous spatial arrangement. The initial component of this research consists of a study of evolution of the coordination of strategic players, where the topology or the structure of the population is shown to be critical in defining the coordination among the players. Next, the effect of network topology on the evolutionary stability of strategies is studied in detail. Based on the results obtained, it is shown that network topology plays a key role in determining the evolutionary stability of a particular strategy in a population of players. Then, the effect of network topology on the optimum placement of strategies is studied. Using genetic optimisation, it is shown that the placement of strategies in a spatially distributed population of players is crucial in maximising the collective payoff of the population. Exploring further the effect of network topology and information diffusion on networked games, the non-optimal or bounded rationality of players is modelled using topological and directed information flow of the network. Based on the topologically distributed bounded rationality model, it is shown that the scale-free and small-world networks emerge in randomly connected populations of sub-optimal players. Thus, the topological and information theoretic interpretations of bounded rationality suggest the topology, information diffusion and the strategic interactions of socio-economical structures are cyclically interdependent

    The influence of topology and information diffusion on networked game dynamics

    Get PDF
    This thesis studies the influence of topology and information diffusion on the strategic interactions of agents in a population. It shows that there exists a reciprocal relationship between the topology, information diffusion and the strategic interactions of a population of players. In order to evaluate the influence of topology and information flow on networked game dynamics, strategic games are simulated on populations of players where the players are distributed in a non-homogeneous spatial arrangement. The initial component of this research consists of a study of evolution of the coordination of strategic players, where the topology or the structure of the population is shown to be critical in defining the coordination among the players. Next, the effect of network topology on the evolutionary stability of strategies is studied in detail. Based on the results obtained, it is shown that network topology plays a key role in determining the evolutionary stability of a particular strategy in a population of players. Then, the effect of network topology on the optimum placement of strategies is studied. Using genetic optimisation, it is shown that the placement of strategies in a spatially distributed population of players is crucial in maximising the collective payoff of the population. Exploring further the effect of network topology and information diffusion on networked games, the non-optimal or bounded rationality of players is modelled using topological and directed information flow of the network. Based on the topologically distributed bounded rationality model, it is shown that the scale-free and small-world networks emerge in randomly connected populations of sub-optimal players. Thus, the topological and information theoretic interpretations of bounded rationality suggest the topology, information diffusion and the strategic interactions of socio-economical structures are cyclically interdependent

    On the influence of topological characteristics on robustness of complex networks

    Full text link
    In this paper, we explore the relationship between the topological characteristics of a complex network and its robustness to sustained targeted attacks. Using synthesised scale-free, small-world and random networks, we look at a number of network measures, including assortativity, modularity, average path length, clustering coefficient, rich club profiles and scale-free exponent (where applicable) of a network, and how each of these influence the robustness of a network under targeted attacks. We use an established robustness coefficient to measure topological robustness, and consider sustained targeted attacks by order of node degree. With respect to scale-free networks, we show that assortativity, modularity and average path length have a positive correlation with network robustness, whereas clustering coefficient has a negative correlation. We did not find any correlation between scale-free exponent and robustness, or rich-club profiles and robustness. The robustness of small-world networks on the other hand, show substantial positive correlations with assortativity, modularity, clustering coefficient and average path length. In comparison, the robustness of Erdos-Renyi random networks did not have any significant correlation with any of the network properties considered. A significant observation is that high clustering decreases topological robustness in scale-free networks, yet it increases topological robustness in small-world networks. Our results highlight the importance of topological characteristics in influencing network robustness, and illustrate design strategies network designers can use to increase the robustness of scale-free and small-world networks under sustained targeted attacks

    Evolutionary stable strategies in networked games: the influence of topology

    Full text link
    Evolutionary game theory is used to model the evolution of competing strategies in a population of players. Evolutionary stability of a strategy is a dynamic equilibrium, in which any competing mutated strategy would be wiped out from a population. If a strategy is weak evolutionarily stable, the competing strategy may manage to survive within the network. Understanding the network-related factors that affect the evolutionary stability of a strategy would be critical in making accurate predictions about the behaviour of a strategy in a real-world strategic decision making environment. In this work, we evaluate the effect of network topology on the evolutionary stability of a strategy. We focus on two well-known strategies known as the Zero-determinant strategy and the Pavlov strategy. Zero-determinant strategies have been shown to be evolutionarily unstable in a well-mixed population of players. We identify that the Zero-determinant strategy may survive, and may even dominate in a population of players connected through a non-homogeneous network. We introduce the concept of `topological stability' to denote this phenomenon. We argue that not only the network topology, but also the evolutionary process applied and the initial distribution of strategies are critical in determining the evolutionary stability of strategies. Further, we observe that topological stability could affect other well-known strategies as well, such as the general cooperator strategy and the cooperator strategy. Our observations suggest that the variation of evolutionary stability due to topological stability of strategies may be more prevalent in the social context of strategic evolution, in comparison to the biological context

    Influence of Supply Chain Network Topology on the Evolution of Firm Strategies

    Get PDF
    This study investigates the influence of the topological structure of a supply chain network (SCN) on the evolution of cooperative and defective strategies adopted by the individual firms. First, a range of topologies representative of SCNs was generated using a fitness-based network growth model, which enabled cross comparisons by parameterising the network topologies with the power law exponent of their respective degree distributions. Then, the inter-firm links in each SCN were considered as repeated strategic interactions and were modelled by the Prisoner’s Dilemma game to represent the self-interested nature of the individual firms. This model is considered an agent-based model, where the agents are bound to their local neighbourhood by the network topology. A novel strategy update rule was then introduced to mimic the behaviour of firms. In particular, the heterogeneously distributed nature of the firm rationality was considered when they update their strategies at the end of each game round. Additionally, the payoff comparison against the neighbours was modelled to be strategy specific as opposed to accumulated payoff comparison analysis adopted in past work. It was found that the SCN topology, the level of rationality of firms and the relative strategy payoff differences are all essential elements in the evolution of cooperation. In summary, a tipping point was found in terms of the power law exponent of the SCN degree distribution, for achieving the highest number of co- operators. When the connection distribution of an SCN is highly unbalanced (such as in hub and spoke topologies) or well balanced (such as in random topologies), more difficult it is to achieve higher levels of co-operation among the firms. It was concluded that the scale-free topologies provide the best balance of hubs firms and lesser connected firms. Therefore, scale-free topologies are capable of achieving the highest proportion of co- operators in the firm population compared to other network topologies

    The failure tolerance of mechatronic software systems to random and targeted attacks

    Full text link
    This paper describes a complex networks approach to study the failure tolerance of mechatronic software systems under various types of hardware and/or software failures. We produce synthetic system architectures based on evidence of modular and hierarchical modular product architectures and known motifs for the interconnection of physical components to software. The system architectures are then subject to various forms of attack. The attacks simulate failure of critical hardware or software. Four types of attack are investigated: degree centrality, betweenness centrality, closeness centrality and random attack. Failure tolerance of the system is measured by a 'robustness coefficient', a topological 'size' metric of the connectedness of the attacked network. We find that the betweenness centrality attack results in the most significant reduction in the robustness coefficient, confirming betweenness centrality, rather than the number of connections (i.e. degree), as the most conservative metric of component importance. A counter-intuitive finding is that "designed" system architectures, including a bus, ring, and star architecture, are not significantly more failure-tolerant than interconnections with no prescribed architecture, that is, a random architecture. Our research provides a data-driven approach to engineer the architecture of mechatronic software systems for failure tolerance.Comment: Proceedings of the 2013 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA (In Print

    Consumer Surplus based Method for Quantifying and Improving the Material Flow Supply Chain Network Robustness

    Get PDF
    Recent advances in network science has encouraged researchers to adopt a topological view when characterising the robustness of supply chain networks (SCNs). However, topology based characterisations, without considering the heterogeneity among the supply chains which form the SCN, can only provide a partial understanding of robustness. Hitherto, focus of robustness studies have been on cyclic SCNs, with unweighted and undirected links representing general inter-firm interactions. Here, we consider the specific case of a material flow SCN with multi-sourcing, which is characterised by a tiered structure with directed and weighted links. The proposed method uses the multinomial logit model to estimate the utility levels of supply chains within the SCN, as perceived by a focal firm which is indicative of the SCN consumers. The robustness of the SCN is characterised by considering the degree to which supply chains overlap with each other as a cost in the logit formulation. Finally, using a randomisation scheme to generate ensembles of SCN configurations which preserve the number of connections at each firm, the configuration which maximises the consumer surplus for the focal firm is identified. The proposed method is implemented on a real world SCN to identify the optimal configuration in terms of robustness

    Topological Structure of Manufacturing Industry Supply Chain Networks

    Get PDF
    Empirical analyses of supply chain networks (SCNs) in extant literature have been rare due to scarcity of data. As a result, theoretical research have relied on arbitrary growth models to generate network topologies supposedly representative of real-world SCNs. Our study is aimed at filling the above gap by systematically analysing a set of manufacturing sector SCNs to establish their topological characteristics. In particular, we compare the differences in topologies of undirected contractual relationships (UCR) and directed material flow (DMF) SCNs. The DMF SCNs are different from the typical UCR SCNs since they are characterised by a strictly tiered and an acyclic structure which does not permit clustering. Additionally, we investigate the SCNs for any self-organized topological features. We find that most SCNs indicate disassortative mixing and power law distribution in terms of interfirm connections. Furthermore, compared to randomised ensembles, self-organized topological features were evident in some SCNs in the form of either overrepresented regimes of moderate betweenness firms or underrepresented regimes of low betweenness firms. Finally, we introduce a simple and intuitive method for estimating the robustness of DMF SCNs, considering the loss of demand due to firm disruptions. Our work could be used as a benchmark for any future analyses of SCNs

    Disassortative Mixing and Systemic Rational Behaviour: How System Rationality Is Influenced by Topology and Placement in Networked Systems

    No full text
    Interdependent decisionmaking of individuals in social systems can be modelled by games played on complex networks. Players in such systems have bounded rationality, which influences the computation of equilibrium solutions. It has been shown that the ‘system rationality’, which indicates the overall rationality of a network of players, may play a key role in the emergence of scale-free or core-periphery topologies in real-world networks. In this work, we identify optimal topologies and mixing patterns of players which can maximise system rationality. Based on simulation results, we show that irrespective of the placement of nodes with higher rationality, it is the disassortative mixing of node rationality that helps to maximize system rationality in a population. In other words, the findings of this work indicate that the overall rationality of a population may improve when more players with non-similar individual rationality levels interact with each other. We identify particular topologies such as the core-periphery topology, which facilitates the optimisation of system rationality. The findings presented in this work may have useful interpretations and applications in socio-economic systems for maximizing the utility of interactions in a population of strategic players

    Influence of topology in the evolution of coordination in complex networks under information diffusion constraints

    No full text
    In this paper, we study the influence of the topological structure of social systems on the evolution of coordination in them. We simulate a coordination game (“Stag-hunt”) on four well-known classes of complex networks commonly used to model social systems, namely scale-free, small-world, random and hierarchical-modular, as well as on the well-mixed model. Our particular focus is on understanding the impact of information diffusion on coordination, and how this impact varies according to the topology of the social system. We demonstrate that while time-lags and noise in the information about relative payoffs affect the emergence of coordination in all social systems, some topologies are markedly more resilient than others to these effects. We also show that, while non-coordination may be a better strategy in a society where people do not have information about the payoffs of others, coordination will quickly emerge as the better strategy when people get this information about others, even with noise and time lags. Societies with the so-called small-world structure are most conducive to the emergence of coordination, despite limitations in information propagation, while societies with scale-free topologies are most sensitive to noise and time-lags in information diffusion. Surprisingly, in all topologies, it is not the highest connected people (hubs), but the slightly less connected people (provincial hubs) who first adopt coordination. Our findings confirm that the evolution of coordination in social systems depends heavily on the underlying social network structure
    corecore